Tetrahedron Letters No.22, pp. 1415-1420, 1964. Pergamon Press Ltd. Printed in Great Britain.

CORRELATION OF ¹³C-H SPIN-SPIN COUPLING CONSTANTS AND INTERNUCLEAR ANGLES IN CYCLIC MOLECULES

Kurt Mislow

Department of Chemistry, New York University, New York 53, New York (Received 17 April 1964)

A linear function correlates the ¹³C-H nuclear spin-spin coupling constant J (in c.p.s.) and the fractional s-character ($\rho_{\rm H}$) of the carbon a.o. from which the C-H bond is formed¹:

$$J = 500 \rho_{\rm H} \qquad \qquad \underline{1}$$

Recently Foote² has reported that J in cycloalkanes appears to be related to the <u>internuclear</u> C-C-C bond angle θ_n by a linear function. Similarly, Laszlo and Schleyer³ have observed a linear relationship between J and the C-C-C internuclear bond angle in C-CH=C systems.

Foote's data are reasonably approximated (Table I) by equation

$$J = 203 - 0.720 \theta_n$$
 2

and from <u>1</u> and <u>2</u> it follows that θ_n is a linear function of ρ_{H^*} . This result is surprising since "hybridization would be expected to be more closely connected with <u>interorbital</u> than interatomic angle^{u²}.

2:

1415

Correlation of ¹³C-H spin-spin coupling constants

No.22

Using normalized and orthogonalized hybrid bonding orbitals⁴, the following relationships obtain for the average local C_{2v} symmetry of the central carbon atom in C-CH₂-C:

$$2\rho_{\rm H} + 2\rho_{\rm C} = 1$$
 3
 $\rho_{\rm C} (1 + \lambda^2) = 1$ 4
 $\lambda^2 \cos \theta_{\rm O} = -1$ 5

where $\rho_{\rm C}$ is the fractional s-character of the central carbon a.o. from which the C-C bond is formed, λ is the mixing coefficient which determines the p-character of the hybrid (s+ λ p) a.o. bonding to carbon, and β_0 is the interorbital C-C-C bond angle, i.e. the angle subtended by the orbital axes at the central carbon atom. Combining <u>1</u>, <u>3</u>, <u>4</u> and <u>5</u>:

$$J = \frac{250 (1 + \cos \theta_0)}{(1 - \cos \theta_0)} \qquad \qquad \underline{6}$$

When θ_n is taken as equal to θ_0 , it is found (Table I) that equation <u>6</u> does not satisfactorily correlate J and θ_n <u>except</u> for the case of perfect tetrahedral symmetry ($\theta_n = 109.5^\circ$, J = 125 c.p.s.). This is the position of minimum angle strain and of maximum overlap where the bonding orbital axes and the internuclear lines coincide, i.e. $\theta_n = \theta_0$ at 109.5°. It has been pointed out^{4,5} that any departure from this angle which is introduced by the geometric constraints of ring formation destroys the σ -character of the bond and results in bond "bending".

Let us now postulate (a) that with increasing angle bending,

expressed as $\Delta \theta_n = |\theta_n - 109.5^\circ|$, there is a corresponding increase in orbital bending $\Delta \theta_0 = |\theta_0 - 109.5^\circ|$, where $\Delta \theta_0 < \Delta \theta_n$ for a given θ_n (orbital following), and (b) that the correspondence between the two changes may be expressed to a first approximation by a linear relationship, i.e., that $\Delta \theta_0 / d\Delta \theta_n$ is a constant, c (c \neq 1). Integration gives:

$$\theta_0 = c\theta_n + 109.5 (1-c)$$
 7

The constant c may be evaluated by fixing θ_0 at 102°52' for $\theta_n = 60^\circ$, the value for cyclopropane⁶, whence:

$$a = \theta_0 = 0.1340 \theta_n + 94.83 \underline{8}$$

Combination of <u>6</u> and <u>8</u> gives J as a non-linear function of θ_n . Agreement with found values is good (Table I). Even though the analytical expression is not linear, the curvature of the plot of J vs. θ_n is so slight that the combined function closely approximates Foote's empirical straight line².

The present approach may be extended to methine systems R_3 CH having local C_{3v} symmetry at the carbon atom bearing the hydrogen. For normalized and orthogonalized orbitals:

$$\rho'_{H} + 3\rho'_{C} = 1$$
 2

For a given value of a_n (and thus of a_0) in the local C_{2v} and C_{3v} systems, $p_C = p'_C$. Therefore, combining 1, 3 and 2:

$$J' = 3J - 250$$
 10

where J' is the J_{C-H} spin-spin coupling constant of the local C_{3v} system. The empirical correlation 2 for C_{2v} thus becomes ll for C_{3v} , and the

No.22

analytical expression 6 is converted to 12:

$$J' = \frac{500 (1 + 2 \cos \theta_0)}{(1 - \cos \theta_0)}$$
12

Combination of <u>12</u> and <u>8</u> then affords J'as a function of θ_n . This treatment gives a J-value for the cubane system which is in satisfactory agreement with the experimental quantity⁷ (Table II).

With the appropriate modification⁴ of equations $\underline{3} - \underline{5}$ and with a knowledge of the molecular geometry, the present treatment might be extended to systems of lower symmetry than local C_{nv} . For example, in bicyclo[2.2.1] heptadiene, where the bond angles are known⁸, the bridgehead carbon has local C_{s} symmetry and we calculate a J_{C-H} of 145.6 c.p.s. This is in good agreement with the found⁹ value of 146 c.p.s.

An extension of the preceding arguments leads to several predictions:

(a) In bicyclo[1.1.1]pentane¹⁰ the θ_n -values of the methine (θ_1 , local C_{3v} symmetry) and methylene (θ_2 , local C_{2v} symmetry) carbons are correlated by the geometric relationship 2(1-cos θ_1) = 3 cos² $\theta_2/2$. It follows that the two values of J_{C-H} should be linked together by equations 2 and <u>11</u>, or by equations <u>6</u>, <u>12</u> and <u>8</u>.

(b) Tetrahedrane (C_4H_4) , which has local C_{3v} symmetry, should have a J_{C-H} of about 225 c.p.s. (Table II), i.e. lower than that of acetylene¹ (251 c.p.s.) but higher than those of tricyclo[4.1.0.0^{2,7}]heptane¹¹ (200 c.p.s.) and 4,5-diphenyltricyclo[1.1.1.0^{4,5}]pentan-2-one¹² (190 c.p.s.).

(c) Prismane or "Ladenburg benzene" (C6H6), which has local Cs symmetry.

should have a J_{C-H} of about 180 c.p.s.

We note that relationships not unlike those proposed in this paper may also obtain in the ground state triplet methylenes¹³. E.s.r. measurements (¹³C hyperfine splittings) suggest that bond bending in fluorenylidene involves orbital following similar in magnitude to that given by our equation $\underline{8}$.

Ta	ble	Ι

J_{C-H} (c.p.s.)

Compound	<u> </u>	Found ^a	<u>[1]</u>	[2]	[3]
Cyclopropane	60.0	161	159.8	750.1	158.9
Cyclobutane	89.3	134	138.7	256.2	138.0
Cyclobutanone	90.0	133.5	138.2	250.0	137.5
Norbornadiene-7	96.7	135.5	133.4	197.7	133.1
Cyclopentane	103.3	128	128.6	156.5	128.8
Cyclohexane	110	123,124	123.8	122.6	124.6
Cycloheptane	112	123	122.4	113.7	123.3
Cycloöctane	112	122	122.4	113.7	123.3
Cyclodecane	116	118	119.5	97.6	121.0
Cyclododecane	112	123	122.4	113.7	123.3

^a Data from references (1) and (2).

[1] Calca. from equation 2.

[2] Calcd. from equation 6 assuming $\theta_0 = \theta_n$

[3] Calcd. from equations 6 and 8.

Table II

Compound	n	Found	_[1]_	[2]
Tetrahedrane	60.0	?	229.4	226.7
Cubane	90.0	160 ± 5^{a}	164.6	162.5
Adamantene	109.5	(125)	122.4	125.0

1419

a Based on dicarbomethoxycubane, ref. 7.

- [1] Calcd. from equation 11
- [2] Calcd. from equations 12 and 8

Acknowledgments

I am grateful to several of my colleagues for stimulating discussions and helpful suggestions: Gerhard L. Closs (Chicago), Marshall Gates (Rochester), Albert Moscowitz (Minnesota), Paul von R. Schleyer (Princeton), Edel Wasserman (Bell Telephone Labs.) and Kenneth B. Wiberg (Yale).

REFERENCES

- N. Muller and D. E. Pritchard, <u>J. Chem. Phys.</u>, <u>31</u>, 763, 1471 (1959); J. N. Shoolery, <u>ibid.</u>, <u>31</u>, 1427 (1959); N. Muller, <u>ibid.</u>, <u>36</u>, 359 (1962); C. Juan and H. S. Gutowsky, <u>ibid.</u>, <u>37</u>, 2198 (1962); E. Lippert and H. Prigge, <u>Ber. Bunsen Ges. Physik. Unem.</u>, <u>57</u>, 415 (1963).
- (2) C. S. Foote, Tetrahedron Letters, No. 9, 579 (1963).
- (3) P. Laszlo and P. von R. Schleyer, J. Am. Chem. Soc., <u>66</u>, 1171 (1964).
- (4) C. A. Coulson, "Valence", Oxford University Press, 1952, Ch. 3
- (5) C. A. Coulson and W. E. Moffitt, Fhil. Mag., 40, 1 (1949).
- (6) C. A. Coulson and T. H. Goodwin, J. Chem. Soc., 3161 (1963).
- (7) P. E. Eaton and T. W. Cole, Jr., J. Am. Chem. Soc., 86, 962 (1964).
- (8) V. Schomaker, cited by C. F. Wilcox, Jr., S. Winstein and W. G. McMillan, J. <u>M. Chem. Soc.</u>, <u>82</u>, 5450 (1960).
- (9) K. Tori, R. Muneyuki and H. Tanida, Canad. J. Chem., 41, 3142 (1963).
- (10) K. B. Wiberg, D. S. Connor and G. M. Lampman, <u>Tetrahedron Letters</u>, No. 10, 531 (1964).
- (11) G. L. Closs and L. E. Closs, <u>J. Am. Chem. Soc.</u>, <u>85</u>, 2023 (1963).
- (12) S. Masamune, J. Am. Chem. Soc., 86, 735 (1964).
- (13) E. Wasserman, private communication.

1420